theorem gcdeqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> gcd _a1 _b1 = gcd _a2 _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
biidd |
_G -> (x || d <-> x || d) |
2 |
|
eqidd |
_G -> x = x |
3 |
|
hyp _ah |
_G -> _a1 = _a2 |
4 |
2, 3 |
dvdeqd |
_G -> (x || _a1 <-> x || _a2) |
5 |
|
hyp _bh |
_G -> _b1 = _b2 |
6 |
2, 5 |
dvdeqd |
_G -> (x || _b1 <-> x || _b2) |
7 |
4, 6 |
aneqd |
_G -> (x || _a1 /\ x || _b1 <-> x || _a2 /\ x || _b2) |
8 |
1, 7 |
bieqd |
_G -> (x || d <-> x || _a1 /\ x || _b1 <-> (x || d <-> x || _a2 /\ x || _b2)) |
9 |
8 |
aleqd |
_G -> (A. x (x || d <-> x || _a1 /\ x || _b1) <-> A. x (x || d <-> x || _a2 /\ x || _b2)) |
10 |
9 |
abeqd |
_G -> {d | A. x (x || d <-> x || _a1 /\ x || _b1)} == {d | A. x (x || d <-> x || _a2 /\ x || _b2)} |
11 |
10 |
theeqd |
_G -> the {d | A. x (x || d <-> x || _a1 /\ x || _b1)} = the {d | A. x (x || d <-> x || _a2 /\ x || _b2)} |
12 |
11 |
conv gcd |
_G -> gcd _a1 _b1 = gcd _a2 _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(muleq)