theorem funcappb (A B F: set) (a b: nat):
$ func F A B -> (a, b e. F <-> a e. A /\ F @ a = b) $;
Step | Hyp | Ref | Expression |
1 |
|
isfappb |
isfun F -> (a, b e. F <-> a e. Dom F /\ F @ a = b) |
2 |
|
funcisf |
func F A B -> isfun F |
3 |
1, 2 |
syl |
func F A B -> (a, b e. F <-> a e. Dom F /\ F @ a = b) |
4 |
|
funcdm |
func F A B -> Dom F == A |
5 |
4 |
eleq2d |
func F A B -> (a e. Dom F <-> a e. A) |
6 |
5 |
aneq1d |
func F A B -> (a e. Dom F /\ F @ a = b <-> a e. A /\ F @ a = b) |
7 |
3, 6 |
bitrd |
func F A B -> (a, b e. F <-> a e. A /\ F @ a = b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)