Theorem Arroweqd | index | src |

theorem Arroweqd (_G: wff) (_A1 _A2 _B1 _B2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _B1 == _B2 $ >
  $ _G -> Arrow _A1 _B1 == Arrow _A2 _B2 $;
StepHypRefExpression
1 biidd
_G -> (isfun f <-> isfun f)
2 eqsidd
_G -> Dom f == Dom f
3 hyp _Ah
_G -> _A1 == _A2
4 2, 3 eqseqd
_G -> (Dom f == _A1 <-> Dom f == _A2)
5 1, 4 aneqd
_G -> (isfun f /\ Dom f == _A1 <-> isfun f /\ Dom f == _A2)
6 eqsidd
_G -> Ran f == Ran f
7 hyp _Bh
_G -> _B1 == _B2
8 6, 7 sseqd
_G -> (Ran f C_ _B1 <-> Ran f C_ _B2)
9 5, 8 aneqd
_G -> (isfun f /\ Dom f == _A1 /\ Ran f C_ _B1 <-> isfun f /\ Dom f == _A2 /\ Ran f C_ _B2)
10 9 abeqd
_G -> {f | isfun f /\ Dom f == _A1 /\ Ran f C_ _B1} == {f | isfun f /\ Dom f == _A2 /\ Ran f C_ _B2}
11 10 conv Arrow
_G -> Arrow _A1 _B1 == Arrow _A2 _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)