theorem eueqd (_G: wff) {x: nat} (_p1 _p2: wff x):
$ _G -> (_p1 <-> _p2) $ >
$ _G -> (eu x _p1 <-> eu x _p2) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _ph |
_G -> (_p1 <-> _p2) |
2 |
|
biidd |
_G -> (x = y <-> x = y) |
3 |
1, 2 |
bieqd |
_G -> (_p1 <-> x = y <-> (_p2 <-> x = y)) |
4 |
3 |
aleqd |
_G -> (A. x (_p1 <-> x = y) <-> A. x (_p2 <-> x = y)) |
5 |
4 |
exeqd |
_G -> (E. y A. x (_p1 <-> x = y) <-> E. y A. x (_p2 <-> x = y)) |
6 |
5 |
conv eu |
_G -> (eu x _p1 <-> eu x _p2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5)