Theorem Ifeq3a | index | src |

theorem Ifeq3a (A B C: set) (p: wff):
  $ (~p -> B == C) -> If p A B == If p A C $;
StepHypRefExpression
1 Ifpos
p -> If p A B == A
2 Ifpos
p -> If p A C == A
3 1, 2 eqstr4d
p -> If p A B == If p A C
4 3 a1i
(~p -> B == C) -> p -> If p A B == If p A C
5 Ifeq3
B == C -> If p A B == If p A C
6 5 imim2i
(~p -> B == C) -> ~p -> If p A B == If p A C
7 4, 6 casesd
(~p -> B == C) -> If p A B == If p A C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)