theorem Ifeq3a (A B C: set) (p: wff):
$ (~p -> B == C) -> If p A B == If p A C $;
Step | Hyp | Ref | Expression |
1 |
|
Ifpos |
p -> If p A B == A |
2 |
|
Ifpos |
p -> If p A C == A |
3 |
1, 2 |
eqstr4d |
p -> If p A B == If p A C |
4 |
3 |
a1i |
(~p -> B == C) -> p -> If p A B == If p A C |
5 |
|
Ifeq3 |
B == C -> If p A B == If p A C |
6 |
5 |
imim2i |
(~p -> B == C) -> ~p -> If p A B == If p A C |
7 |
4, 6 |
casesd |
(~p -> B == C) -> If p A B == If p A C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)