theorem Ifeq3a (A B C: set) (p: wff):
  $ (~p -> B == C) -> If p A B == If p A C $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | Ifpos | p -> If p A B == A | 
        
          | 2 |  | Ifpos | p -> If p A C == A | 
        
          | 3 | 1, 2 | eqstr4d | p -> If p A B == If p A C | 
        
          | 4 | 3 | a1i | (~p -> B == C) -> p -> If p A B == If p A C | 
        
          | 5 |  | Ifeq3 | B == C -> If p A B == If p A C | 
        
          | 6 | 5 | imim2i | (~p -> B == C) -> ~p -> If p A B == If p A C | 
        
          | 7 | 4, 6 | casesd | (~p -> B == C) -> If p A B == If p A C | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)