theorem Ifeq2a (A B C: set) (p: wff): $ (p -> A == B) -> If p A C == If p B C $;
Step | Hyp | Ref | Expression |
1 |
|
Ifeq2 |
A == B -> If p A C == If p B C |
2 |
1 |
imim2i |
(p -> A == B) -> p -> If p A C == If p B C |
3 |
|
Ifneg |
~p -> If p A C == C |
4 |
|
Ifneg |
~p -> If p B C == C |
5 |
3, 4 |
eqstr4d |
~p -> If p A C == If p B C |
6 |
5 |
a1i |
(p -> A == B) -> ~p -> If p A C == If p B C |
7 |
2, 6 |
casesd |
(p -> A == B) -> If p A C == If p B C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)