Theorem Ifneg | index | src |

theorem Ifneg (A B: set) (p: wff): $ ~p -> If p A B == B $;
StepHypRefExpression
1 ifpneg
~p -> (ifp p (n e. A) (n e. B) <-> n e. B)
2 1 eqab1d
~p -> {n | ifp p (n e. A) (n e. B)} == B
3 2 conv If
~p -> If p A B == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)