Theorem Ifid | index | src |

theorem Ifid (A: set) (p: wff): $ If p A A == A $;
StepHypRefExpression
1 Ifpos
p -> If p A A == A
2 Ifneg
~p -> If p A A == A
3 1, 2 cases
If p A A == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)