theorem eqb1 (n: nat): $ odd n <-> n = b1 (n // 2) $;
Step | Hyp | Ref | Expression |
1 |
|
b0orb1 |
n = b0 (n // 2) \/ n = b1 (n // 2) |
2 |
1 |
conv or |
~n = b0 (n // 2) -> n = b1 (n // 2) |
3 |
|
con2 |
(n = b0 (n // 2) -> ~odd n) -> odd n -> ~n = b0 (n // 2) |
4 |
|
b0odd |
~odd (b0 (n // 2)) |
5 |
|
oddeq |
n = b0 (n // 2) -> (odd n <-> odd (b0 (n // 2))) |
6 |
5 |
noteqd |
n = b0 (n // 2) -> (~odd n <-> ~odd (b0 (n // 2))) |
7 |
4, 6 |
mpbiri |
n = b0 (n // 2) -> ~odd n |
8 |
3, 7 |
ax_mp |
odd n -> ~n = b0 (n // 2) |
9 |
2, 8 |
syl |
odd n -> n = b1 (n // 2) |
10 |
|
b1odd |
odd (b1 (n // 2)) |
11 |
|
oddeq |
n = b1 (n // 2) -> (odd n <-> odd (b1 (n // 2))) |
12 |
10, 11 |
mpbiri |
n = b1 (n // 2) -> odd n |
13 |
9, 12 |
ibii |
odd n <-> n = b1 (n // 2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)