theorem splitb (G: wff) (a: nat) (p: wff):
$ G -> a = b0 (a // 2) -> p $ >
$ G -> a = b1 (a // 2) -> p $ >
$ G -> p $;
Step | Hyp | Ref | Expression |
1 |
|
b0orb1 |
a = b0 (a // 2) \/ a = b1 (a // 2) |
2 |
|
hyp h0 |
G -> a = b0 (a // 2) -> p |
3 |
|
hyp h1 |
G -> a = b1 (a // 2) -> p |
4 |
2, 3 |
eord |
G -> a = b0 (a // 2) \/ a = b1 (a // 2) -> p |
5 |
1, 4 |
mpi |
G -> p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)