Theorem elpower | index | src |

theorem elpower (a b: nat): $ a e. power b <-> a C_ b $;
StepHypRefExpression
1 bitr
(a e. power b <-> a e. Power b) -> (a e. Power b <-> a C_ b) -> (a e. power b <-> a C_ b)
2 ellower
finite (Power b) -> (a e. lower (Power b) <-> a e. Power b)
3 2 conv power
finite (Power b) -> (a e. power b <-> a e. Power b)
4 powerfin
finite b -> finite (Power b)
5 finns
finite b
6 4, 5 ax_mp
finite (Power b)
7 3, 6 ax_mp
a e. power b <-> a e. Power b
8 1, 7 ax_mp
(a e. Power b <-> a C_ b) -> (a e. power b <-> a C_ b)
9 elPower
a e. Power b <-> a C_ b
10 8, 9 ax_mp
a e. power b <-> a C_ b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)