theorem cbvrlams {x y: nat} (a: nat x y) (b: nat x): $ \. x e. a, b = \. y e. a, N[y / x] b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnv | FN/ y b |
|
2 | nfsbn1 | FN/ x N[y / x] b |
|
3 | sbnq | x = y -> b = N[y / x] b |
|
4 | 1, 2, 3 | cbvrlamh | \. x e. a, b = \. y e. a, N[y / x] b |