theorem cbvrlamh {x y: nat} (a b c: nat x y):
$ FN/ y b $ >
$ FN/ x c $ >
$ x = y -> b = c $ >
$ \. x e. a, b = \. y e. a, c $;
Step | Hyp | Ref | Expression |
1 |
|
lowereq |
(\ x, b) |` a == (\ y, c) |` a -> lower ((\ x, b) |` a) = lower ((\ y, c) |` a) |
2 |
1 |
conv rlam |
(\ x, b) |` a == (\ y, c) |` a -> \. x e. a, b = \. y e. a, c |
3 |
|
reseq1 |
\ x, b == \ y, c -> (\ x, b) |` a == (\ y, c) |` a |
4 |
|
hyp h1 |
FN/ y b |
5 |
|
hyp h2 |
FN/ x c |
6 |
|
hyp e |
x = y -> b = c |
7 |
4, 5, 6 |
cbvlamh |
\ x, b == \ y, c |
8 |
3, 7 |
ax_mp |
(\ x, b) |` a == (\ y, c) |` a |
9 |
2, 8 |
ax_mp |
\. x e. a, b = \. y e. a, c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)