Theorem cbvrlam | index | src |

theorem cbvrlam {x y: nat} (a: nat x y) (b: nat x) (c: nat y):
  $ x = y -> b = c $ >
  $ \. x e. a, b = \. y e. a, c $;
StepHypRefExpression
1 nfnv
FN/ y b
2 nfnv
FN/ x c
3 hyp e
x = y -> b = c
4 1, 2, 3 cbvrlamh
\. x e. a, b = \. y e. a, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)