Theorem nfrlam | index | src |

theorem nfrlam {x y: nat} (a b: nat x y):
  $ FN/ x a $ >
  $ FN/ x b $ >
  $ FN/ x \. y e. a, b $;
StepHypRefExpression
1 hyp h2
FN/ x b
2 1 nflam
FS/ x \ y, b
3 hyp h1
FN/ x a
4 3 nfns
FS/ x a
5 2, 4 nfres
FS/ x (\ y, b) |` a
6 5 nflower
FN/ x lower ((\ y, b) |` a)
7 6 conv rlam
FN/ x \. y e. a, b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)