theorem cbvrlamd {x y: nat} (G: wff) (a: nat x y) (b: nat x) (c: nat y):
$ G /\ x = y -> b = c $ >
$ G -> \. x e. a, b = \. y e. a, c $;
Step | Hyp | Ref | Expression |
1 |
|
cbvrlams |
\. x e. a, b = \. y e. a, N[y / x] b |
2 |
1 |
a1i |
G -> \. x e. a, b = \. y e. a, N[y / x] b |
3 |
|
sbnet |
A. x (x = y -> b = c) -> N[y / x] b = c |
4 |
|
hyp h |
G /\ x = y -> b = c |
5 |
4 |
ialda |
G -> A. x (x = y -> b = c) |
6 |
3, 5 |
syl |
G -> N[y / x] b = c |
7 |
6 |
rlameq2d |
G -> \. y e. a, N[y / x] b = \. y e. a, c |
8 |
2, 7 |
eqtrd |
G -> \. x e. a, b = \. y e. a, c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)