Theorem rlameq2d | index | src |

theorem rlameq2d (_G: wff) {x: nat} (a _v1 _v2: nat x):
  $ _G -> _v1 = _v2 $ >
  $ _G -> \. x e. a, _v1 = \. x e. a, _v2 $;
StepHypRefExpression
1 eqidd
_G -> a = a
2 hyp _h
_G -> _v1 = _v2
3 1, 2 rlameqd
_G -> \. x e. a, _v1 = \. x e. a, _v2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)