Theorem rlameq1 | index | src |

theorem rlameq1 {x: nat} (a b c: nat x):
  $ a = b -> \. x e. a, c = \. x e. b, c $;
StepHypRefExpression
1 nseq
a = b -> a == b
2 1 reseq2d
a = b -> (\ x, c) |` a == (\ x, c) |` b
3 2 lowereqd
a = b -> lower ((\ x, c) |` a) = lower ((\ x, c) |` b)
4 3 conv rlam
a = b -> \. x e. a, c = \. x e. b, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)