| Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqtr | 
          card 0 = ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 -> card 0 = 0  | 
        
        
          | 2 | 
           | 
          cardvallem | 
          card 0 = ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 -> card 0 = 0  | 
        
        
          | 4 | 
           | 
          eqtr | 
          ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0 -> 0 + 0 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0  | 
        
        
          | 5 | 
           | 
          addeq | 
          ((\ i, card i) |` upto 0) @ (0 // 2) = 0 -> 0 % 2 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0  | 
        
        
          | 6 | 
           | 
          ndmapp | 
          ~0 // 2 e. Dom ((\ i, card i) |` upto 0) -> ((\ i, card i) |` upto 0) @ (0 // 2) = 0  | 
        
        
          | 7 | 
           | 
          eleq2 | 
          Dom ((\ i, card i) |` upto 0) == 0 -> (0 // 2 e. Dom ((\ i, card i) |` upto 0) <-> 0 // 2 e. 0)  | 
        
        
          | 8 | 
           | 
          eqstr | 
          Dom ((\ i, card i) |` upto 0) == upto 0 -> upto 0 == 0 -> Dom ((\ i, card i) |` upto 0) == 0  | 
        
        
          | 9 | 
           | 
          dmreslam | 
          Dom ((\ i, card i) |` upto 0) == upto 0  | 
        
        
          | 10 | 
          8, 9 | 
          ax_mp | 
          upto 0 == 0 -> Dom ((\ i, card i) |` upto 0) == 0  | 
        
        
          | 11 | 
           | 
          nseq | 
          upto 0 = 0 -> upto 0 == 0  | 
        
        
          | 12 | 
           | 
          upto0 | 
          upto 0 = 0  | 
        
        
          | 13 | 
          11, 12 | 
          ax_mp | 
          upto 0 == 0  | 
        
        
          | 14 | 
          10, 13 | 
          ax_mp | 
          Dom ((\ i, card i) |` upto 0) == 0  | 
        
        
          | 15 | 
          7, 14 | 
          ax_mp | 
          0 // 2 e. Dom ((\ i, card i) |` upto 0) <-> 0 // 2 e. 0  | 
        
        
          | 16 | 
           | 
          el02 | 
          ~0 // 2 e. 0  | 
        
        
          | 17 | 
          15, 16 | 
          mtbir | 
          ~0 // 2 e. Dom ((\ i, card i) |` upto 0)  | 
        
        
          | 18 | 
          6, 17 | 
          ax_mp | 
          ((\ i, card i) |` upto 0) @ (0 // 2) = 0  | 
        
        
          | 19 | 
          5, 18 | 
          ax_mp | 
          0 % 2 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0  | 
        
        
          | 20 | 
           | 
          mod01 | 
          0 % 2 = 0  | 
        
        
          | 21 | 
          19, 20 | 
          ax_mp | 
          ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0  | 
        
        
          | 22 | 
          4, 21 | 
          ax_mp | 
          0 + 0 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0  | 
        
        
          | 23 | 
           | 
          add0 | 
          0 + 0 = 0  | 
        
        
          | 24 | 
          22, 23 | 
          ax_mp | 
          ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0  | 
        
        
          | 25 | 
          3, 24 | 
          ax_mp | 
          card 0 = 0  |