Step | Hyp | Ref | Expression |
1 |
|
eqtr |
card 0 = ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 -> card 0 = 0 |
2 |
|
cardvallem |
card 0 = ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 |
3 |
1, 2 |
ax_mp |
((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 -> card 0 = 0 |
4 |
|
eqtr |
((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0 -> 0 + 0 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 |
5 |
|
addeq |
((\ i, card i) |` upto 0) @ (0 // 2) = 0 -> 0 % 2 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0 |
6 |
|
ndmapp |
~0 // 2 e. Dom ((\ i, card i) |` upto 0) -> ((\ i, card i) |` upto 0) @ (0 // 2) = 0 |
7 |
|
eleq2 |
Dom ((\ i, card i) |` upto 0) == 0 -> (0 // 2 e. Dom ((\ i, card i) |` upto 0) <-> 0 // 2 e. 0) |
8 |
|
eqstr |
Dom ((\ i, card i) |` upto 0) == upto 0 -> upto 0 == 0 -> Dom ((\ i, card i) |` upto 0) == 0 |
9 |
|
dmreslam |
Dom ((\ i, card i) |` upto 0) == upto 0 |
10 |
8, 9 |
ax_mp |
upto 0 == 0 -> Dom ((\ i, card i) |` upto 0) == 0 |
11 |
|
nseq |
upto 0 = 0 -> upto 0 == 0 |
12 |
|
upto0 |
upto 0 = 0 |
13 |
11, 12 |
ax_mp |
upto 0 == 0 |
14 |
10, 13 |
ax_mp |
Dom ((\ i, card i) |` upto 0) == 0 |
15 |
7, 14 |
ax_mp |
0 // 2 e. Dom ((\ i, card i) |` upto 0) <-> 0 // 2 e. 0 |
16 |
|
el02 |
~0 // 2 e. 0 |
17 |
15, 16 |
mtbir |
~0 // 2 e. Dom ((\ i, card i) |` upto 0) |
18 |
6, 17 |
ax_mp |
((\ i, card i) |` upto 0) @ (0 // 2) = 0 |
19 |
5, 18 |
ax_mp |
0 % 2 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0 |
20 |
|
mod01 |
0 % 2 = 0 |
21 |
19, 20 |
ax_mp |
((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 + 0 |
22 |
4, 21 |
ax_mp |
0 + 0 = 0 -> ((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 |
23 |
|
add0 |
0 + 0 = 0 |
24 |
22, 23 |
ax_mp |
((\ i, card i) |` upto 0) @ (0 // 2) + 0 % 2 = 0 |
25 |
3, 24 |
ax_mp |
card 0 = 0 |