theorem appslamed (G: wff) (a b c: nat) {x: nat} (A: set x):
$ G /\ x = a -> A @ b = c $ >
$ G -> (\\ x, A) @ (a, b) = c $;
Step | Hyp | Ref | Expression |
1 |
|
appslams |
(\\ x, A) @ (a, b) = (S[a / x] A) @ b |
2 |
|
ax_6 |
E. x x = a |
3 |
|
nfv |
F/ x G |
4 |
|
nfsbs1 |
FS/ x S[a / x] A |
5 |
|
nfnv |
FN/ x b |
6 |
4, 5 |
nfapp |
FN/ x (S[a / x] A) @ b |
7 |
|
nfnv |
FN/ x c |
8 |
6, 7 |
nf_eq |
F/ x (S[a / x] A) @ b = c |
9 |
|
sbsq |
x = a -> A == S[a / x] A |
10 |
9 |
anwr |
G /\ x = a -> A == S[a / x] A |
11 |
10 |
appeq1d |
G /\ x = a -> A @ b = (S[a / x] A) @ b |
12 |
|
hyp h |
G /\ x = a -> A @ b = c |
13 |
11, 12 |
eqtr3d |
G /\ x = a -> (S[a / x] A) @ b = c |
14 |
13 |
exp |
G -> x = a -> (S[a / x] A) @ b = c |
15 |
3, 8, 14 |
eexdh |
G -> E. x x = a -> (S[a / x] A) @ b = c |
16 |
2, 15 |
mpi |
G -> (S[a / x] A) @ b = c |
17 |
1, 16 |
syl5eq |
G -> (\\ x, A) @ (a, b) = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)