Theorem appslamed | index | src |

theorem appslamed (G: wff) (a b c: nat) {x: nat} (A: set x):
  $ G /\ x = a -> A @ b = c $ >
  $ G -> (\\ x, A) @ (a, b) = c $;
StepHypRefExpression
1 appslams
(\\ x, A) @ (a, b) = (S[a / x] A) @ b
2 ax_6
E. x x = a
3 nfv
F/ x G
4 nfsbs1
FS/ x S[a / x] A
5 nfnv
FN/ x b
6 4, 5 nfapp
FN/ x (S[a / x] A) @ b
7 nfnv
FN/ x c
8 6, 7 nf_eq
F/ x (S[a / x] A) @ b = c
9 sbsq
x = a -> A == S[a / x] A
10 9 anwr
G /\ x = a -> A == S[a / x] A
11 10 appeq1d
G /\ x = a -> A @ b = (S[a / x] A) @ b
12 hyp h
G /\ x = a -> A @ b = c
13 11, 12 eqtr3d
G /\ x = a -> (S[a / x] A) @ b = c
14 13 exp
G -> x = a -> (S[a / x] A) @ b = c
15 3, 8, 14 eexdh
G -> E. x x = a -> (S[a / x] A) @ b = c
16 2, 15 mpi
G -> (S[a / x] A) @ b = c
17 1, 16 syl5eq
G -> (\\ x, A) @ (a, b) = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)