Theorem addsub | index | src |

theorem addsub (a b c: nat): $ c <= a -> a + b - c = a - c + b $;
StepHypRefExpression
1 pncan
a - c + b + c - c = a - c + b
2 addrass
a - c + c + b = a - c + b + c
3 npcan
c <= a -> a - c + c = a
4 3 eqcomd
c <= a -> a = a - c + c
5 4 addeq1d
c <= a -> a + b = a - c + c + b
6 2, 5 syl6eq
c <= a -> a + b = a - c + b + c
7 6 subeq1d
c <= a -> a + b - c = a - c + b + c - c
8 1, 7 syl6eq
c <= a -> a + b - c = a - c + b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, add0, addS)