theorem addsub (a b c: nat): $ c <= a -> a + b - c = a - c + b $;
Step | Hyp | Ref | Expression |
1 |
|
pncan |
a - c + b + c - c = a - c + b |
2 |
|
addrass |
a - c + c + b = a - c + b + c |
3 |
|
npcan |
c <= a -> a - c + c = a |
4 |
3 |
eqcomd |
c <= a -> a = a - c + c |
5 |
4 |
addeq1d |
c <= a -> a + b = a - c + c + b |
6 |
2, 5 |
syl6eq |
c <= a -> a + b = a - c + b + c |
7 |
6 |
subeq1d |
c <= a -> a + b - c = a - c + b + c - c |
8 |
1, 7 |
syl6eq |
c <= a -> a + b - c = a - c + b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)