theorem subadd (a b c: nat): $ b <= a -> (a - b = c <-> b + c = a) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqcom | 
          a - b = c -> c = a - b  | 
        
        
          | 2 | 
           | 
          addeq2 | 
          c = a - b -> b + c = b + (a - b)  | 
        
        
          | 3 | 
          2 | 
          eqeq1d | 
          c = a - b -> (b + c = a <-> b + (a - b) = a)  | 
        
        
          | 4 | 
          1, 3 | 
          rsyl | 
          a - b = c -> (b + c = a <-> b + (a - b) = a)  | 
        
        
          | 5 | 
           | 
          pncan3 | 
          b <= a -> b + (a - b) = a  | 
        
        
          | 6 | 
          4, 5 | 
          syl5ibrcom | 
          b <= a -> a - b = c -> b + c = a  | 
        
        
          | 7 | 
           | 
          eqsub2 | 
          b + c = a -> a - b = c  | 
        
        
          | 8 | 
          7 | 
          a1i | 
          b <= a -> b + c = a -> a - b = c  | 
        
        
          | 9 | 
          6, 8 | 
          ibid | 
          b <= a -> (a - b = c <-> b + c = a)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      peano5,
      addeq,
      add0,
      addS)