theorem subadd (a b c: nat): $ b <= a -> (a - b = c <-> b + c = a) $;
Step | Hyp | Ref | Expression |
1 |
|
eqcom |
a - b = c -> c = a - b |
2 |
|
addeq2 |
c = a - b -> b + c = b + (a - b) |
3 |
2 |
eqeq1d |
c = a - b -> (b + c = a <-> b + (a - b) = a) |
4 |
1, 3 |
rsyl |
a - b = c -> (b + c = a <-> b + (a - b) = a) |
5 |
|
pncan3 |
b <= a -> b + (a - b) = a |
6 |
4, 5 |
syl5ibrcom |
b <= a -> a - b = c -> b + c = a |
7 |
|
eqsub2 |
b + c = a -> a - b = c |
8 |
7 |
a1i |
b <= a -> b + c = a -> a - b = c |
9 |
6, 8 |
ibid |
b <= a -> (a - b = c <-> b + c = a) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)