Theorem subadd | index | src |

theorem subadd (a b c: nat): $ b <= a -> (a - b = c <-> b + c = a) $;
StepHypRefExpression
1 eqcom
a - b = c -> c = a - b
2 addeq2
c = a - b -> b + c = b + (a - b)
3 2 eqeq1d
c = a - b -> (b + c = a <-> b + (a - b) = a)
4 1, 3 rsyl
a - b = c -> (b + c = a <-> b + (a - b) = a)
5 pncan3
b <= a -> b + (a - b) = a
6 4, 5 syl5ibrcom
b <= a -> a - b = c -> b + c = a
7 eqsub2
b + c = a -> a - b = c
8 7 a1i
b <= a -> b + c = a -> a - b = c
9 6, 8 ibid
b <= a -> (a - b = c <-> b + c = a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, add0, addS)