theorem Optioneqd (_G: wff) (_A1 _A2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> Option _A1 == Option _A2 $;
Step | Hyp | Ref | Expression |
1 |
|
biidd |
_G -> (n = 0 <-> n = 0) |
2 |
|
eqidd |
_G -> n - 1 = n - 1 |
3 |
|
hyp _Ah |
_G -> _A1 == _A2 |
4 |
2, 3 |
eleqd |
_G -> (n - 1 e. _A1 <-> n - 1 e. _A2) |
5 |
1, 4 |
oreqd |
_G -> (n = 0 \/ n - 1 e. _A1 <-> n = 0 \/ n - 1 e. _A2) |
6 |
5 |
abeqd |
_G -> {n | n = 0 \/ n - 1 e. _A1} == {n | n = 0 \/ n - 1 e. _A2} |
7 |
6 |
conv Option |
_G -> Option _A1 == Option _A2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)