Theorem Optioneqd | index | src |

theorem Optioneqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> Option _A1 == Option _A2 $;
StepHypRefExpression
1 biidd
_G -> (n = 0 <-> n = 0)
2 eqidd
_G -> n - 1 = n - 1
3 hyp _Ah
_G -> _A1 == _A2
4 2, 3 eleqd
_G -> (n - 1 e. _A1 <-> n - 1 e. _A2)
5 1, 4 oreqd
_G -> (n = 0 \/ n - 1 e. _A1 <-> n = 0 \/ n - 1 e. _A2)
6 5 abeqd
_G -> {n | n = 0 \/ n - 1 e. _A1} == {n | n = 0 \/ n - 1 e. _A2}
7 6 conv Option
_G -> Option _A1 == Option _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)