theorem boolfin: $ finite Bool $;
Step | Hyp | Ref | Expression |
1 |
|
fineq |
Bool == {n | bool n} -> (finite Bool <-> finite {n | bool n}) |
2 |
|
elBool |
n e. Bool <-> bool n |
3 |
2 |
eqab2i |
Bool == {n | bool n} |
4 |
1, 3 |
ax_mp |
finite Bool <-> finite {n | bool n} |
5 |
|
ltfin |
finite {n | n < 2} |
6 |
5 |
conv bool |
finite {n | bool n} |
7 |
4, 6 |
mpbir |
finite Bool |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)