Theorem zsubsub | index | src |

theorem zsubsub (a b c: nat): $ a -Z b -Z c = a -Z (b +Z c) $;
StepHypRefExpression
1 eqtr4
a -Z b -Z c = a +Z (-uZ b -Z c) -> a -Z (b +Z c) = a +Z (-uZ b -Z c) -> a -Z b -Z c = a -Z (b +Z c)
2 zaddsubass
a +Z -uZ b -Z c = a +Z (-uZ b -Z c)
3 2 conv zsub
a -Z b -Z c = a +Z (-uZ b -Z c)
4 1, 3 ax_mp
a -Z (b +Z c) = a +Z (-uZ b -Z c) -> a -Z b -Z c = a -Z (b +Z c)
5 zaddeq2
-uZ (b +Z c) = -uZ b -Z c -> a +Z -uZ (b +Z c) = a +Z (-uZ b -Z c)
6 5 conv zsub
-uZ (b +Z c) = -uZ b -Z c -> a -Z (b +Z c) = a +Z (-uZ b -Z c)
7 znegadd2
-uZ (b +Z c) = -uZ b -Z c
8 6, 7 ax_mp
a -Z (b +Z c) = a +Z (-uZ b -Z c)
9 4, 8 ax_mp
a -Z b -Z c = a -Z (b +Z c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)