theorem zsubsub (a b c: nat): $ a -Z b -Z c = a -Z (b +Z c) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqtr4 | 
          a -Z b -Z c = a +Z (-uZ b -Z c) -> a -Z (b +Z c) = a +Z (-uZ b -Z c) -> a -Z b -Z c = a -Z (b +Z c)  | 
        
        
          | 2 | 
           | 
          zaddsubass | 
          a +Z -uZ b -Z c = a +Z (-uZ b -Z c)  | 
        
        
          | 3 | 
          2 | 
          conv zsub | 
          a -Z b -Z c = a +Z (-uZ b -Z c)  | 
        
        
          | 4 | 
          1, 3 | 
          ax_mp | 
          a -Z (b +Z c) = a +Z (-uZ b -Z c) -> a -Z b -Z c = a -Z (b +Z c)  | 
        
        
          | 5 | 
           | 
          zaddeq2 | 
          -uZ (b +Z c) = -uZ b -Z c -> a +Z -uZ (b +Z c) = a +Z (-uZ b -Z c)  | 
        
        
          | 6 | 
          5 | 
          conv zsub | 
          -uZ (b +Z c) = -uZ b -Z c -> a -Z (b +Z c) = a +Z (-uZ b -Z c)  | 
        
        
          | 7 | 
           | 
          znegadd2 | 
          -uZ (b +Z c) = -uZ b -Z c  | 
        
        
          | 8 | 
          6, 7 | 
          ax_mp | 
          a -Z (b +Z c) = a +Z (-uZ b -Z c)  | 
        
        
          | 9 | 
          4, 8 | 
          ax_mp | 
          a -Z b -Z c = a -Z (b +Z c)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)