Theorem znpncan | index | src |

theorem znpncan (a b c: nat): $ a -Z b +Z (b -Z c) = a -Z c $;
StepHypRefExpression
1 eqtr3
a -Z b +Z b -Z c = a -Z b +Z (b -Z c) -> a -Z b +Z b -Z c = a -Z c -> a -Z b +Z (b -Z c) = a -Z c
2 zaddsubass
a -Z b +Z b -Z c = a -Z b +Z (b -Z c)
3 1, 2 ax_mp
a -Z b +Z b -Z c = a -Z c -> a -Z b +Z (b -Z c) = a -Z c
4 zsubeq1
a -Z b +Z b = a -> a -Z b +Z b -Z c = a -Z c
5 znpcan
a -Z b +Z b = a
6 4, 5 ax_mp
a -Z b +Z b -Z c = a -Z c
7 3, 6 ax_mp
a -Z b +Z (b -Z c) = a -Z c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)