theorem unieqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> sUnion _A1 == sUnion _A2 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          biidd | 
          _G -> (x e. y <-> x e. y)  | 
        
        
          | 2 | 
           | 
          eqidd | 
          _G -> y = y  | 
        
        
          | 3 | 
           | 
          hyp _Ah | 
          _G -> _A1 == _A2  | 
        
        
          | 4 | 
          2, 3 | 
          eleqd | 
          _G -> (y e. _A1 <-> y e. _A2)  | 
        
        
          | 5 | 
          1, 4 | 
          aneqd | 
          _G -> (x e. y /\ y e. _A1 <-> x e. y /\ y e. _A2)  | 
        
        
          | 6 | 
          5 | 
          exeqd | 
          _G -> (E. y (x e. y /\ y e. _A1) <-> E. y (x e. y /\ y e. _A2))  | 
        
        
          | 7 | 
          6 | 
          abeqd | 
          _G -> {x | E. y (x e. y /\ y e. _A1)} == {x | E. y (x e. y /\ y e. _A2)} | 
        
        
          | 8 | 
          7 | 
          conv sUnion | 
          _G -> sUnion _A1 == sUnion _A2  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)