theorem takenth0 (i l n: nat): $ n <= i -> nth i (take l n) = 0 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          ntheq0 | 
          nth i (take l n) = 0 <-> len (take l n) <= i  | 
        
        
          | 2 | 
           | 
          letr | 
          len (take l n) <= n -> n <= i -> len (take l n) <= i  | 
        
        
          | 3 | 
           | 
          leeq1 | 
          len (take l n) = min (len l) n -> (len (take l n) <= n <-> min (len l) n <= n)  | 
        
        
          | 4 | 
           | 
          takelen | 
          len (take l n) = min (len l) n  | 
        
        
          | 5 | 
          3, 4 | 
          ax_mp | 
          len (take l n) <= n <-> min (len l) n <= n  | 
        
        
          | 6 | 
           | 
          minle2 | 
          min (len l) n <= n  | 
        
        
          | 7 | 
          5, 6 | 
          mpbir | 
          len (take l n) <= n  | 
        
        
          | 8 | 
          2, 7 | 
          ax_mp | 
          n <= i -> len (take l n) <= i  | 
        
        
          | 9 | 
          1, 8 | 
          sylibr | 
          n <= i -> nth i (take l n) = 0  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)