theorem takenth0 (i l n: nat): $ n <= i -> nth i (take l n) = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
ntheq0 |
nth i (take l n) = 0 <-> len (take l n) <= i |
2 |
|
letr |
len (take l n) <= n -> n <= i -> len (take l n) <= i |
3 |
|
leeq1 |
len (take l n) = min (len l) n -> (len (take l n) <= n <-> min (len l) n <= n) |
4 |
|
takelen |
len (take l n) = min (len l) n |
5 |
3, 4 |
ax_mp |
len (take l n) <= n <-> min (len l) n <= n |
6 |
|
minle2 |
min (len l) n <= n |
7 |
5, 6 |
mpbir |
len (take l n) <= n |
8 |
2, 7 |
ax_mp |
n <= i -> len (take l n) <= i |
9 |
1, 8 |
sylibr |
n <= i -> nth i (take l n) = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)