Theorem takenth0 | index | src |

theorem takenth0 (i l n: nat): $ n <= i -> nth i (take l n) = 0 $;
StepHypRefExpression
1 ntheq0
nth i (take l n) = 0 <-> len (take l n) <= i
2 letr
len (take l n) <= n -> n <= i -> len (take l n) <= i
3 leeq1
len (take l n) = min (len l) n -> (len (take l n) <= n <-> min (len l) n <= n)
4 takelen
len (take l n) = min (len l) n
5 3, 4 ax_mp
len (take l n) <= n <-> min (len l) n <= n
6 minle2
min (len l) n <= n
7 5, 6 mpbir
len (take l n) <= n
8 2, 7 ax_mp
n <= i -> len (take l n) <= i
9 1, 8 sylibr
n <= i -> nth i (take l n) = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)