Theorem subsneqd | index | src |

theorem subsneqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> (subsn _A1 <-> subsn _A2) $;
StepHypRefExpression
1 eqidd
_G -> x = x
2 hyp _Ah
_G -> _A1 == _A2
3 1, 2 eleqd
_G -> (x e. _A1 <-> x e. _A2)
4 eqidd
_G -> y = y
5 4, 2 eleqd
_G -> (y e. _A1 <-> y e. _A2)
6 biidd
_G -> (x = y <-> x = y)
7 5, 6 imeqd
_G -> (y e. _A1 -> x = y <-> y e. _A2 -> x = y)
8 3, 7 imeqd
_G -> (x e. _A1 -> y e. _A1 -> x = y <-> x e. _A2 -> y e. _A2 -> x = y)
9 8 aleqd
_G -> (A. y (x e. _A1 -> y e. _A1 -> x = y) <-> A. y (x e. _A2 -> y e. _A2 -> x = y))
10 9 aleqd
_G -> (A. x A. y (x e. _A1 -> y e. _A1 -> x = y) <-> A. x A. y (x e. _A2 -> y e. _A2 -> x = y))
11 10 conv subsn
_G -> (subsn _A1 <-> subsn _A2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)