Theorem sseq0 | index | src |

theorem sseq0 (A B: set): $ A C_ B -> B == 0 -> A == 0 $;
StepHypRefExpression
1 ss02
A C_ 0 <-> A == 0
2 sseq2
B == 0 -> (A C_ B <-> A C_ 0)
3 2 bi1d
B == 0 -> A C_ B -> A C_ 0
4 3 com12
A C_ B -> B == 0 -> A C_ 0
5 1, 4 syl6ib
A C_ B -> B == 0 -> A == 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)