theorem srecpeqd (_G: wff) (_A1 _A2: set) (_n1 _n2: nat):
$ _G -> _A1 == _A2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> (srecp _A1 _n1 <-> srecp _A2 _n2) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _Ah |
_G -> _A1 == _A2 |
2 |
|
hyp _nh |
_G -> _n1 = _n2 |
3 |
1, 2 |
srecpauxeqd |
_G -> srecpaux _A1 _n1 = srecpaux _A2 _n2 |
4 |
3 |
trueeqd |
_G -> (true (srecpaux _A1 _n1) <-> true (srecpaux _A2 _n2)) |
5 |
4 |
conv srecp |
_G -> (srecp _A1 _n1 <-> srecp _A2 _n2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)