Theorem sninj | index | src |

theorem sninj (a b: nat): $ sn a = sn b <-> a = b $;
StepHypRefExpression
1 thesn
the (sn a) = a
2 thesn
the (sn b) = b
3 nseq
sn a = sn b -> sn a == sn b
4 3 theeqd
sn a = sn b -> the (sn a) = the (sn b)
5 1, 2, 4 eqtr3g
sn a = sn b -> a = b
6 sneq
a = b -> sn a = sn b
7 5, 6 ibii
sn a = sn b <-> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)