Theorem shleqd | index | src |

theorem shleqd (_G: wff) (_a1 _a2 _n1 _n2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> shl _a1 _n1 = shl _a2 _n2 $;
StepHypRefExpression
1 hyp _ah
_G -> _a1 = _a2
2 eqidd
_G -> 2 = 2
3 hyp _nh
_G -> _n1 = _n2
4 2, 3 poweqd
_G -> 2 ^ _n1 = 2 ^ _n2
5 1, 4 muleqd
_G -> _a1 * 2 ^ _n1 = _a2 * 2 ^ _n2
6 5 conv shl
_G -> shl _a1 _n1 = shl _a2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)