Theorem shl02 | index | src |

theorem shl02 (a: nat): $ shl a 0 = a $;
StepHypRefExpression
1 eqtr
shl a 0 = a * 1 -> a * 1 = a -> shl a 0 = a
2 muleq2
2 ^ 0 = 1 -> a * 2 ^ 0 = a * 1
3 2 conv shl
2 ^ 0 = 1 -> shl a 0 = a * 1
4 pow0
2 ^ 0 = 1
5 3, 4 ax_mp
shl a 0 = a * 1
6 1, 5 ax_mp
a * 1 = a -> shl a 0 = a
7 mul12
a * 1 = a
8 6, 7 ax_mp
shl a 0 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)