Theorem shl01 | index | src |

theorem shl01 (b: nat): $ shl 0 b = 0 $;
StepHypRefExpression
1 mul01
0 * 2 ^ b = 0
2 1 conv shl
shl 0 b = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, muleq, add0, mul0, mulS)