theorem recneq1d (_G: wff) (_z1 _z2: nat) (S: set) (n: nat): $ _G -> _z1 = _z2 $ > $ _G -> recn _z1 S n = recn _z2 S n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> _z1 = _z2 |
|
2 | eqsidd | _G -> S == S |
|
3 | eqidd | _G -> n = n |
|
4 | 1, 2, 3 | recneqd | _G -> recn _z1 S n = recn _z2 S n |