theorem recnauxeq3d (_G: wff) (z: nat) (S: set) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> recnaux z S _n1 = recnaux z S _n2 $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | _G -> z = z |
|
| 2 | eqsidd | _G -> S == S |
|
| 3 | hyp _h | _G -> _n1 = _n2 |
|
| 4 | 1, 2, 3 | recnauxeqd | _G -> recnaux z S _n1 = recnaux z S _n2 |