theorem pimeqed (G: wff) {x: nat} (a: nat) (p: wff x) (q: wff):
$ G /\ x = a -> (p <-> q) $ >
$ G -> ((P. x x = a -> p) <-> q) $;
Step | Hyp | Ref | Expression |
1 |
|
bian1 |
E. x x = a -> (E. x x = a /\ A. x (x = a -> p) <-> A. x (x = a -> p)) |
2 |
1 |
conv pim |
E. x x = a -> ((P. x x = a -> p) <-> A. x (x = a -> p)) |
3 |
|
ax_6 |
E. x x = a |
4 |
2, 3 |
ax_mp |
(P. x x = a -> p) <-> A. x (x = a -> p) |
5 |
|
hyp e |
G /\ x = a -> (p <-> q) |
6 |
5 |
aleqed |
G -> (A. x (x = a -> p) <-> q) |
7 |
4, 6 |
syl5bb |
G -> ((P. x x = a -> p) <-> q) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12)