Theorem pimeqe | index | src |

theorem pimeqe {x: nat} (a: nat) (p: wff x) (q: wff):
  $ x = a -> (p <-> q) $ >
  $ (P. x x = a -> p) <-> q $;
StepHypRefExpression
1 hyp e
x = a -> (p <-> q)
2 1 anwr
T. /\ x = a -> (p <-> q)
3 2 pimeqed
T. -> ((P. x x = a -> p) <-> q)
4 3 trud
(P. x x = a -> p) <-> q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)