theorem pimeqe {x: nat} (a: nat) (p: wff x) (q: wff): $ x = a -> (p <-> q) $ > $ (P. x x = a -> p) <-> q $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp e | x = a -> (p <-> q) |
|
2 | 1 | anwr | T. /\ x = a -> (p <-> q) |
3 | 2 | pimeqed | T. -> ((P. x x = a -> p) <-> q) |
4 | 3 | trud | (P. x x = a -> p) <-> q |