theorem optns (n: nat): $ Option n == b1 n $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(x e. Option n <-> x = 0 \/ x - 1 e. n) -> (x e. b1 n <-> x = 0 \/ x - 1 e. n) -> (x e. Option n <-> x e. b1 n) |
2 |
|
elopt |
x e. Option n <-> x = 0 \/ x - 1 e. n |
3 |
1, 2 |
ax_mp |
(x e. b1 n <-> x = 0 \/ x - 1 e. n) -> (x e. Option n <-> x e. b1 n) |
4 |
|
elb1 |
x e. b1 n <-> x = 0 \/ x - 1 e. n |
5 |
3, 4 |
ax_mp |
x e. Option n <-> x e. b1 n |
6 |
5 |
ax_gen |
A. x (x e. Option n <-> x e. b1 n) |
7 |
6 |
conv eqs |
Option n == b1 n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)