Theorem optns | index | src |

theorem optns (n: nat): $ Option n == b1 n $;
StepHypRefExpression
1 bitr4
(x e. Option n <-> x = 0 \/ x - 1 e. n) -> (x e. b1 n <-> x = 0 \/ x - 1 e. n) -> (x e. Option n <-> x e. b1 n)
2 elopt
x e. Option n <-> x = 0 \/ x - 1 e. n
3 1, 2 ax_mp
(x e. b1 n <-> x = 0 \/ x - 1 e. n) -> (x e. Option n <-> x e. b1 n)
4 elb1
x e. b1 n <-> x = 0 \/ x - 1 e. n
5 3, 4 ax_mp
x e. Option n <-> x e. b1 n
6 5 ax_gen
A. x (x e. Option n <-> x e. b1 n)
7 6 conv eqs
Option n == b1 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)