theorem optupto (n: nat): $ Option (upto n) == upto (suc n) $;
Step | Hyp | Ref | Expression |
1 |
|
eqstr4 |
Option (upto n) == b1 (upto n) -> upto (suc n) == b1 (upto n) -> Option (upto n) == upto (suc n) |
2 |
|
optns |
Option (upto n) == b1 (upto n) |
3 |
1, 2 |
ax_mp |
upto (suc n) == b1 (upto n) -> Option (upto n) == upto (suc n) |
4 |
|
nseq |
upto (suc n) = b1 (upto n) -> upto (suc n) == b1 (upto n) |
5 |
|
uptoS |
upto (suc n) = b1 (upto n) |
6 |
4, 5 |
ax_mp |
upto (suc n) == b1 (upto n) |
7 |
3, 6 |
ax_mp |
Option (upto n) == upto (suc n) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)