Theorem Powereqd | index | src |

theorem Powereqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> Power _A1 == Power _A2 $;
StepHypRefExpression
1 eqsidd
_G -> x == x
2 hyp _Ah
_G -> _A1 == _A2
3 1, 2 sseqd
_G -> (x C_ _A1 <-> x C_ _A2)
4 3 abeqd
_G -> {x | x C_ _A1} == {x | x C_ _A2}
5 4 conv Power
_G -> Power _A1 == Power _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)