theorem elopt (A: set) (a: nat): $ a e. Option A <-> a = 0 \/ a - 1 e. A $;
Step | Hyp | Ref | Expression |
1 |
|
eqeq1 |
n = a -> (n = 0 <-> a = 0) |
2 |
|
subeq1 |
n = a -> n - 1 = a - 1 |
3 |
2 |
eleq1d |
n = a -> (n - 1 e. A <-> a - 1 e. A) |
4 |
1, 3 |
oreqd |
n = a -> (n = 0 \/ n - 1 e. A <-> a = 0 \/ a - 1 e. A) |
5 |
4 |
elabe |
a e. {n | n = 0 \/ n - 1 e. A} <-> a = 0 \/ a - 1 e. A |
6 |
5 |
conv Option |
a e. Option A <-> a = 0 \/ a - 1 e. A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(addeq)