Theorem odd0 | index | src |

theorem odd0: $ ~odd 0 $;
StepHypRefExpression
1 eqeq1
0 % 2 = 0 -> (0 % 2 = 1 <-> 0 = 1)
2 1 conv odd
0 % 2 = 0 -> (odd 0 <-> 0 = 1)
3 mod01
0 % 2 = 0
4 2, 3 ax_mp
odd 0 <-> 0 = 1
5 eqcom
0 = 1 -> 1 = 0
6 d1ne0
1 != 0
7 6 conv ne
~1 = 0
8 5, 7 mt
~0 = 1
9 4, 8 mtbir
~odd 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)