pub theorem nth0 (n: nat): $ nth n 0 = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
ifneg |
~n < len 0 -> if (n < len 0) (suc (listfn 0 @ n)) 0 = 0 |
2 |
1 |
conv nth |
~n < len 0 -> nth n 0 = 0 |
3 |
|
lteq2 |
len 0 = 0 -> (n < len 0 <-> n < 0) |
4 |
|
len0 |
len 0 = 0 |
5 |
3, 4 |
ax_mp |
n < len 0 <-> n < 0 |
6 |
|
lt02 |
~n < 0 |
7 |
5, 6 |
mtbir |
~n < len 0 |
8 |
2, 7 |
ax_mp |
nth n 0 = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)