Theorem nth0 | index | src |

pub theorem nth0 (n: nat): $ nth n 0 = 0 $;
StepHypRefExpression
1 ifneg
~n < len 0 -> if (n < len 0) (suc (listfn 0 @ n)) 0 = 0
2 1 conv nth
~n < len 0 -> nth n 0 = 0
3 lteq2
len 0 = 0 -> (n < len 0 <-> n < 0)
4 len0
len 0 = 0
5 3, 4 ax_mp
n < len 0 <-> n < 0
6 lt02
~n < 0
7 5, 6 mtbir
~n < len 0
8 2, 7 ax_mp
nth n 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)