theorem mulinvmlem (G: wff) (a b n: nat):
$ G -> mod(n): a * b = 1 $ >
$ G -> mod(n): a * invm a n = 1 $;
Step | Hyp | Ref | Expression |
1 |
|
muleq2 |
x = invm a n -> a * x = a * invm a n |
2 |
1 |
eqmeq2d |
x = invm a n -> (mod(n): a * x = 1 <-> mod(n): a * invm a n = 1) |
3 |
2 |
elabe |
invm a n e. {x | mod(n): a * x = 1} <-> mod(n): a * invm a n = 1 |
4 |
|
leastel |
b e. {x | mod(n): a * x = 1} -> least {x | mod(n): a * x = 1} e. {x | mod(n): a * x = 1} |
5 |
4 |
conv invm |
b e. {x | mod(n): a * x = 1} -> invm a n e. {x | mod(n): a * x = 1} |
6 |
|
muleq2 |
x = b -> a * x = a * b |
7 |
6 |
eqmeq2d |
x = b -> (mod(n): a * x = 1 <-> mod(n): a * b = 1) |
8 |
7 |
elabe |
b e. {x | mod(n): a * x = 1} <-> mod(n): a * b = 1 |
9 |
|
hyp h |
G -> mod(n): a * b = 1 |
10 |
8, 9 |
sylibr |
G -> b e. {x | mod(n): a * x = 1} |
11 |
5, 10 |
syl |
G -> invm a n e. {x | mod(n): a * x = 1} |
12 |
3, 11 |
sylib |
G -> mod(n): a * invm a n = 1 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS)