Theorem muladdmod2lt | index | src |

theorem muladdmod2lt (a b c: nat): $ b != 0 /\ c < b -> (b * a + c) % b = c $;
StepHypRefExpression
1 anr
b != 0 /\ c < b -> c < b
2 eqidd
b != 0 /\ c < b -> b * a + c = b * a + c
3 1, 2 eqdivmod
b != 0 /\ c < b -> (b * a + c) // b = a /\ (b * a + c) % b = c
4 3 anrd
b != 0 /\ c < b -> (b * a + c) % b = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)