theorem minadd1 (a b c: nat): $ min a b + c = min (a + c) (b + c) $;
Step | Hyp | Ref | Expression |
1 |
|
ifpos |
a < b -> if (a < b) a b = a |
2 |
1 |
conv min |
a < b -> min a b = a |
3 |
2 |
addeq1d |
a < b -> min a b + c = a + c |
4 |
|
ltadd1 |
a < b <-> a + c < b + c |
5 |
|
ifpos |
a + c < b + c -> if (a + c < b + c) (a + c) (b + c) = a + c |
6 |
5 |
conv min |
a + c < b + c -> min (a + c) (b + c) = a + c |
7 |
4, 6 |
sylbi |
a < b -> min (a + c) (b + c) = a + c |
8 |
3, 7 |
eqtr4d |
a < b -> min a b + c = min (a + c) (b + c) |
9 |
|
ifneg |
~a < b -> if (a < b) a b = b |
10 |
9 |
conv min |
~a < b -> min a b = b |
11 |
10 |
addeq1d |
~a < b -> min a b + c = b + c |
12 |
|
noteq |
(a < b <-> a + c < b + c) -> (~a < b <-> ~a + c < b + c) |
13 |
12, 4 |
ax_mp |
~a < b <-> ~a + c < b + c |
14 |
|
ifneg |
~a + c < b + c -> if (a + c < b + c) (a + c) (b + c) = b + c |
15 |
14 |
conv min |
~a + c < b + c -> min (a + c) (b + c) = b + c |
16 |
13, 15 |
sylbi |
~a < b -> min (a + c) (b + c) = b + c |
17 |
11, 16 |
eqtr4d |
~a < b -> min a b + c = min (a + c) (b + c) |
18 |
8, 17 |
cases |
min a b + c = min (a + c) (b + c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)