theorem lmemlt (a l: nat): $ a IN l -> a < l $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_1 = l -> a = a |
2 |
|
id |
_1 = l -> _1 = l |
3 |
1, 2 |
lmemeqd |
_1 = l -> (a IN _1 <-> a IN l) |
4 |
1, 2 |
lteqd |
_1 = l -> (a < _1 <-> a < l) |
5 |
3, 4 |
imeqd |
_1 = l -> (a IN _1 -> a < _1 <-> a IN l -> a < l) |
6 |
|
eqidd |
_1 = 0 -> a = a |
7 |
|
id |
_1 = 0 -> _1 = 0 |
8 |
6, 7 |
lmemeqd |
_1 = 0 -> (a IN _1 <-> a IN 0) |
9 |
6, 7 |
lteqd |
_1 = 0 -> (a < _1 <-> a < 0) |
10 |
8, 9 |
imeqd |
_1 = 0 -> (a IN _1 -> a < _1 <-> a IN 0 -> a < 0) |
11 |
|
eqidd |
_1 = a2 -> a = a |
12 |
|
id |
_1 = a2 -> _1 = a2 |
13 |
11, 12 |
lmemeqd |
_1 = a2 -> (a IN _1 <-> a IN a2) |
14 |
11, 12 |
lteqd |
_1 = a2 -> (a < _1 <-> a < a2) |
15 |
13, 14 |
imeqd |
_1 = a2 -> (a IN _1 -> a < _1 <-> a IN a2 -> a < a2) |
16 |
|
eqidd |
_1 = a1 : a2 -> a = a |
17 |
|
id |
_1 = a1 : a2 -> _1 = a1 : a2 |
18 |
16, 17 |
lmemeqd |
_1 = a1 : a2 -> (a IN _1 <-> a IN a1 : a2) |
19 |
16, 17 |
lteqd |
_1 = a1 : a2 -> (a < _1 <-> a < a1 : a2) |
20 |
18, 19 |
imeqd |
_1 = a1 : a2 -> (a IN _1 -> a < _1 <-> a IN a1 : a2 -> a < a1 : a2) |
21 |
|
absurd |
~a IN 0 -> a IN 0 -> a < 0 |
22 |
|
lmem0 |
~a IN 0 |
23 |
21, 22 |
ax_mp |
a IN 0 -> a < 0 |
24 |
|
lmemS |
a IN a1 : a2 <-> a = a1 \/ a IN a2 |
25 |
|
ltconsid1 |
a1 < a1 : a2 |
26 |
|
lteq1 |
a = a1 -> (a < a1 : a2 <-> a1 < a1 : a2) |
27 |
25, 26 |
mpbiri |
a = a1 -> a < a1 : a2 |
28 |
27 |
a1i |
(a IN a2 -> a < a2) -> a = a1 -> a < a1 : a2 |
29 |
|
ltconsid2 |
a2 < a1 : a2 |
30 |
|
lttr |
a < a2 -> a2 < a1 : a2 -> a < a1 : a2 |
31 |
29, 30 |
mpi |
a < a2 -> a < a1 : a2 |
32 |
31 |
imim2i |
(a IN a2 -> a < a2) -> a IN a2 -> a < a1 : a2 |
33 |
28, 32 |
eord |
(a IN a2 -> a < a2) -> a = a1 \/ a IN a2 -> a < a1 : a2 |
34 |
24, 33 |
syl5bi |
(a IN a2 -> a < a2) -> a IN a1 : a2 -> a < a1 : a2 |
35 |
5, 10, 15, 20, 23, 34 |
listind |
a IN l -> a < l |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)