theorem lmemlt (a l: nat): $ a IN l -> a < l $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqidd | 
          _1 = l -> a = a  | 
        
        
          | 2 | 
           | 
          id | 
          _1 = l -> _1 = l  | 
        
        
          | 3 | 
          1, 2 | 
          lmemeqd | 
          _1 = l -> (a IN _1 <-> a IN l)  | 
        
        
          | 4 | 
          1, 2 | 
          lteqd | 
          _1 = l -> (a < _1 <-> a < l)  | 
        
        
          | 5 | 
          3, 4 | 
          imeqd | 
          _1 = l -> (a IN _1 -> a < _1 <-> a IN l -> a < l)  | 
        
        
          | 6 | 
           | 
          eqidd | 
          _1 = 0 -> a = a  | 
        
        
          | 7 | 
           | 
          id | 
          _1 = 0 -> _1 = 0  | 
        
        
          | 8 | 
          6, 7 | 
          lmemeqd | 
          _1 = 0 -> (a IN _1 <-> a IN 0)  | 
        
        
          | 9 | 
          6, 7 | 
          lteqd | 
          _1 = 0 -> (a < _1 <-> a < 0)  | 
        
        
          | 10 | 
          8, 9 | 
          imeqd | 
          _1 = 0 -> (a IN _1 -> a < _1 <-> a IN 0 -> a < 0)  | 
        
        
          | 11 | 
           | 
          eqidd | 
          _1 = a2 -> a = a  | 
        
        
          | 12 | 
           | 
          id | 
          _1 = a2 -> _1 = a2  | 
        
        
          | 13 | 
          11, 12 | 
          lmemeqd | 
          _1 = a2 -> (a IN _1 <-> a IN a2)  | 
        
        
          | 14 | 
          11, 12 | 
          lteqd | 
          _1 = a2 -> (a < _1 <-> a < a2)  | 
        
        
          | 15 | 
          13, 14 | 
          imeqd | 
          _1 = a2 -> (a IN _1 -> a < _1 <-> a IN a2 -> a < a2)  | 
        
        
          | 16 | 
           | 
          eqidd | 
          _1 = a1 : a2 -> a = a  | 
        
        
          | 17 | 
           | 
          id | 
          _1 = a1 : a2 -> _1 = a1 : a2  | 
        
        
          | 18 | 
          16, 17 | 
          lmemeqd | 
          _1 = a1 : a2 -> (a IN _1 <-> a IN a1 : a2)  | 
        
        
          | 19 | 
          16, 17 | 
          lteqd | 
          _1 = a1 : a2 -> (a < _1 <-> a < a1 : a2)  | 
        
        
          | 20 | 
          18, 19 | 
          imeqd | 
          _1 = a1 : a2 -> (a IN _1 -> a < _1 <-> a IN a1 : a2 -> a < a1 : a2)  | 
        
        
          | 21 | 
           | 
          absurd | 
          ~a IN 0 -> a IN 0 -> a < 0  | 
        
        
          | 22 | 
           | 
          lmem0 | 
          ~a IN 0  | 
        
        
          | 23 | 
          21, 22 | 
          ax_mp | 
          a IN 0 -> a < 0  | 
        
        
          | 24 | 
           | 
          lmemS | 
          a IN a1 : a2 <-> a = a1 \/ a IN a2  | 
        
        
          | 25 | 
           | 
          ltconsid1 | 
          a1 < a1 : a2  | 
        
        
          | 26 | 
           | 
          lteq1 | 
          a = a1 -> (a < a1 : a2 <-> a1 < a1 : a2)  | 
        
        
          | 27 | 
          25, 26 | 
          mpbiri | 
          a = a1 -> a < a1 : a2  | 
        
        
          | 28 | 
          27 | 
          a1i | 
          (a IN a2 -> a < a2) -> a = a1 -> a < a1 : a2  | 
        
        
          | 29 | 
           | 
          ltconsid2 | 
          a2 < a1 : a2  | 
        
        
          | 30 | 
           | 
          lttr | 
          a < a2 -> a2 < a1 : a2 -> a < a1 : a2  | 
        
        
          | 31 | 
          29, 30 | 
          mpi | 
          a < a2 -> a < a1 : a2  | 
        
        
          | 32 | 
          31 | 
          imim2i | 
          (a IN a2 -> a < a2) -> a IN a2 -> a < a1 : a2  | 
        
        
          | 33 | 
          28, 32 | 
          eord | 
          (a IN a2 -> a < a2) -> a = a1 \/ a IN a2 -> a < a1 : a2  | 
        
        
          | 34 | 
          24, 33 | 
          syl5bi | 
          (a IN a2 -> a < a2) -> a IN a1 : a2 -> a < a1 : a2  | 
        
        
          | 35 | 
          5, 10, 15, 20, 23, 34 | 
          listind | 
          a IN l -> a < l  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)