theorem lmemS (a b l: nat): $ a IN b : l <-> a = b \/ a IN l $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a IN b : l <-> a e. b ; lmems l) -> (a e. b ; lmems l <-> a = b \/ a IN l) -> (a IN b : l <-> a = b \/ a IN l) |
2 |
|
elneq2 |
lmems (b : l) = b ; lmems l -> (a e. lmems (b : l) <-> a e. b ; lmems l) |
3 |
2 |
conv lmem |
lmems (b : l) = b ; lmems l -> (a IN b : l <-> a e. b ; lmems l) |
4 |
|
lmemsS |
lmems (b : l) = b ; lmems l |
5 |
3, 4 |
ax_mp |
a IN b : l <-> a e. b ; lmems l |
6 |
1, 5 |
ax_mp |
(a e. b ; lmems l <-> a = b \/ a IN l) -> (a IN b : l <-> a = b \/ a IN l) |
7 |
|
elins |
a e. b ; lmems l <-> a = b \/ a e. lmems l |
8 |
7 |
conv lmem |
a e. b ; lmems l <-> a = b \/ a IN l |
9 |
6, 8 |
ax_mp |
a IN b : l <-> a = b \/ a IN l |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)