Theorem lmemS | index | src |

theorem lmemS (a b l: nat): $ a IN b : l <-> a = b \/ a IN l $;
StepHypRefExpression
1 bitr
(a IN b : l <-> a e. b ; lmems l) -> (a e. b ; lmems l <-> a = b \/ a IN l) -> (a IN b : l <-> a = b \/ a IN l)
2 elneq2
lmems (b : l) = b ; lmems l -> (a e. lmems (b : l) <-> a e. b ; lmems l)
3 2 conv lmem
lmems (b : l) = b ; lmems l -> (a IN b : l <-> a e. b ; lmems l)
4 lmemsS
lmems (b : l) = b ; lmems l
5 3, 4 ax_mp
a IN b : l <-> a e. b ; lmems l
6 1, 5 ax_mp
(a e. b ; lmems l <-> a = b \/ a IN l) -> (a IN b : l <-> a = b \/ a IN l)
7 elins
a e. b ; lmems l <-> a = b \/ a e. lmems l
8 7 conv lmem
a e. b ; lmems l <-> a = b \/ a IN l
9 6, 8 ax_mp
a IN b : l <-> a = b \/ a IN l

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)